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3 LEAKAGE THROUGH COMPOSITE LINERS
3.1 Introduction

3.1.1 Scope of the section

Asindicated in Section 1.2.4, two types of liners are considered: geomem-
brane liners (i.e. geomembrane alone) and composite liners (i.e. liners
comprised of a geomembrane associated with a layer of low-permeability
soil). Section 2 discussed leakage through geomembrane liners. Leakage
through composite liners is discussed in this section.

3.1.2 Leakage mechanisms

Leakage through a composite liner. A composite liner is comprised of a
geomembrane upper component and a low-permeability soil layer lower
component. Therefore, leakage migrates first through the geomembrane
component and, then, through the soil component.

Leakage through the geomembrane component of a composite liner. As
indicated in Section 2.1.2, there are two mechanisms by which leakage can
migrate through a gecomembrane:

® permeation through the geomembrane (i.e. flow through a gecomem-
brane that has no defects); and
¢ flow through geomembrane defects such as holes or pinholes.

*Part [ of this paper appeared in Geotextiles and Geomembranes 8(1).
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7 J. P. Giroud, R. Bonaparte

Leakage rates due to permeation through the geomembrane component
of a composite liner should not be significantly affected by the presence of
the underlying low-permeability soil layer because even a soil with a very
low permeability is still very permeable as compared to a geomembrane
without defects. Therefore, data and discussions from Section 2.2 on
permeation through a geomembrane without defects are applicable to
composite liners, and Section 3 will be devoted to leakage through
composite Jiners due to a hole in the geomembrane.

Leakage through a composite liner due to a geomembrane hole. The
mechanism of leakage through a composite liner when there is a hole in the
geomembrane is as follows: the fluid (i.e. liquid or vapor) first migrates
through the geomembrane hole; the fluid may then travel laterally some
distance in the space, if any, between the geomembrane and the low-
permeability soil; finally, the fluid migrates into and eventually through
the low-permeability soil. This leakage mechanism is applicable to both
liquids and gases. However, in the remainder of this section, consideration
will be limited to the leakage of liquids through composite liners.

There may be no space between the gcomembrane component and the
soil component of a composite liner if the gecomembrane is sprayed directly
onto the low-permeability soil layer. This technique is not very often used,
and, in the more usual case of a geomembrane manufactured in a plant,
there will be some space between the gecomembrane component and the
soil component of a composite liner in almost all applications because:

¢ the geomembrane has wrinkles (note that geomembranc wrinkles
may exist cven under very high pressures as shown by Stone®);

® there are clods or irregularities at the underlying soil surface; and/or

¢ even if the underlying soil surface is apparently smooth, the geomem-
brane bridges small spaces between soil particles.

Test results discussed in Section 3.3 seem to indicate that some lateral
flow almost always occurs between the geomembrane and the underlying
soil, even under good laboratory test conditions when the geomembrane is
placed as flat as possible on a soil layer that has a smooth surface.

Influence of overlying matérial. As discussed in Section 2.3.3, leakage
through a hole in a geomembrane liner underlain by a pervious material
can be significantly impeded by the overlying material. The casc of a
composite liner is completely different: the flow is essentially governed by
the low-permeability soil underlying the gecomembrane, i.e. the head loss
at the geomembrane hole is negligible compared to the head loss in the
low-permeability soil. Therefore, if the material overlying the geomem-
brane is more permeable than the low-permeability soil component of the

Cc4



Leakage through liners—11 73

composite liner (which is practically always the case), no significant head
loss will take place in the overlying material. Therefore, the presence of
the overlying material will not significantly affect the leakage rate, unless
fine particles migrating from the overlying material clog the ggomembrane
hole and/or the space between the geomembrane and low-permeability
soil.

From the above discussion, it may be concluded that, for all practical
purposes, the rate of leakage through a composite liner is independent of
the overlying material.

3.1.3 Organization of the section

Because the leakage mechanisms presented above are complex, it is
appropriate to consider different and complementary approaches. Accor-
dingly, the next two sections (3.2 and 3.3) are devoted to analytical studies
and laboratory model tests, respectively. Lastly, practical conclusions
regarding the evaluation of leakage rates through composite liners are
presented in Section 3.4.

3.2 Analytical studies

3.2.1 Introduction

As indicated in Section 3.1.2, liquid that has passed through a hole in the
geomembrane component of a composite liner may flow laterally some
distance between the gecomembrane and the low-permeability soil before
migrating into the low-permeability soil. This ‘interface flow’ is possible
only if there is a space between the gcomembrane and the low-permeabil-
ity soil. There is no interface flow if the gecomembrane and the soil are in
perfect contact (which is an ideal case that is extremely difficult to achieve
in practice).

Accordingly, two types of analytical studies are presented hereafter:

® analytical studies assuming that there is perfect contact between the
geomembrane and the low-permeability soil, and, consequently,
liquid does not flow laterally between the geomembrane and the
low-permeability soil; and

® analytical studies assuming that liquid flows laterally between the
geomembrane and the low-permeability soil before migrating into the
low-permeability soil.

In all cases, analyses presented in this section are based on the assump-
tion of steady-state saturated flow conditions.
Three-dimensional analyses of this complex problem are difficult and it
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74 J. P. Giroud, R. Bonaparte

is appropriate to start with two-dimensional analyses. Accordingly, the
remainder of Section 3.2 is organized as follows:

® Two-dimensional analyses assuming perfect contact (Section 3.2.2).
® Three-dimensional analyses assuming perfect contact (Section 3.2.3).
® Three-dimensional analyses with interface flow (Section 3.2.4).

3.2.2 Two-dimensional analyses assuming perfect contact
Faure'® has made an extensive two-dimensional theoretical analysis (using
numerical methods) of the leakage through a composite liner due to a hole
in the geomembrane, assuming perfect contact between the geomembrane
and the underlying low-permeability soil. Most of Section 3.2.2 is a
summary of Faure’s work. A two-dimensional study was also made by
Sherard!® who traced flow nets by trial and error for a limited number of
cases.

Assumptions. The two-dimensional case discussed in this section is

defined as follows (Fig. 5(a)):

® The hole in the geomembrane is a slot with a width b and an infinite
length in the direction perpendicular to the considered cross-section.

® The depth of liquid on top of the gecomembrane is A,,.

® The thickness of the low-permeability soil layer beneath the geomem-
brane is H, and its hydraulic conductivity is k.

Description of the flow. Both Faure and Sherard have shown that for
two-dimensional flow (Fig. 5(b)):

® there is horizontal flow in the soil along a portion of the interface
(although there is no flow between the geomembrane and the soil
since perfect contact is assumed); and

® there is a phreatic surface beyond which the soil is not saturated.

These qualitative characteristics of two-dimensional flow are certainly
also applicable to the three-dimensional case (circular hole). Examples of
equipotential lines for the two-dimensional case are given in Fig. 6 and a
chart giving the location of the phreatic surface in the two-dimensional
case is presented in Fig. 7.

Leakage rate. A chart giving the leakage rate when the geomembrane
and the underlying soil are in perfect contact was given by Faure'®-2? for
the two-dimensional case (Fig. 8). The resuits given by Sherard!® for a
limited number of cases are consistent with Faure’s. Faure’s chart (Fig. 8)
is used with the following equation:

Q° = Cek(H, +hy) @)
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Fig. 5. Two-dimensional flow through a composite liner due 10 a ggcomembrane defect,
assuming perfect contact between geomembrane and soil layer: (a) definition of the
two-dimensional case considered; (b) correct solution; (c) vertical flow giving a lower
bound of the leakage rate; (d) radial low giving an upper bound of the leakage rate. As
demonstrated by Faure:'® (i) the Row is limited laterally by a phreatic surface (i.e. there is
no flow beyond surfaces (1) in Fig. 5(b)); and (ii) there is flow in the soil along a portion of
the geomembrane-soil interface (although there is no flow between the geomembrane and
the soil because there is no space between the geomembrane and the soil in the case of
perfect contact).

where: Q* = leakage rate per unit length in the direction perpendicular to
the figure; Cy: = dimensionless coefficient given by the chart as a function
of b/H, and h,/H;; b = width of the slot; k, = hydraulic conductivity of
the low-permeability soil underlying the geomembrane; A, = thickness of
the low-permeability soil underlying the geomembrane; and A,, = depth
of liquid on top of the geomembrane. Basic SI units are: Q* (m?s), b (m),
k, (mys), H, (m), and A,, (m).

Lower bound solution. If the flow is assumed to be vertical (Fig. 5(c)),
the leakage rate is given by a close-form solution obtained by applying
Darcy’s equation to a rectangular domain:

Q* = k,b(h,, + H)H, (24)

where the notation is the same as above.

A comparison of Figs 5(b) and 5(c) shows that the area of flow for the
case of vertical flow (Fig. 5(c)) is only a fraction of the area of flow for the
correct solution (Fig. 5(b)). Therefore, it may be concluded that the
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76 J. P. Giroud, R. Bonaparte
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Fig. 6. Typical equipotential lines Yor leakage through a composite liner due to a
geomembrane hole. These cquipatential lines result from a two-dimensional study assum-
ing that the gcomembranc and the underlying soil are in perfect contact (sce case (b) in
Fig. 5) (from Faure)." The cases shown above are: (a) b/H, = 0-02 and ho/H, = 1; (b)
biH, = 0-02 and hJH, = 3; (c) blH, = 0-2 and h./H, = 1/3; and (d) b/H, = 0:2 and
hJH, = 1. Notation: b = width of infinitely long hole (slot) in the gcomembrane;
h, = depth of liquid on top of the geomembrane; and H, = thickness of the low-
permeability soil layer underlying the geomembrane. Note that there is no low beyond the

phreatic surface.
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Fig. 7. Lateral exient of the phreatic surface limiting flow in the soil layer due to a hole in

the geomembrane (from Faure).'® This chart is related to the two-dimensional case (the

hole is a slot of width b) and perfect contact between the geomembrane and the soil layer.

The chart shows that, when the water depth becomes very large, L,/b and Ly/b become

very large, whercas L /H, and L,/H, reach a limiting value of the order of 5. In other words,

the lateral extent of the saturated zone can be large compared to the hole size, but not more
than a few times the thickness of the soil layer.
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Fig. 8. Chart for calculation of leakage rate due to geomembrane hole when the geomem-
brane is in perfect contact with a low-permeability soil. This chart gives the dimensionless
cocfficient Cg to be used in eqn (23) which gives the leakage rate through a composite liner
due (o a slot in the geomembrane (two-dimensional case). This chart was established by
Faure.™ The coefficient Cy can also be used in eqn (31) to make an approximate
evaluation of the ieakage rate through a composite liner due to a circular hole in the
geomembranc (three-dimensional case). Notation: h, = depth of liquid on the geomem-
branc; & = width of the slot (to be replaced by the diameter 4 of a circular hole when the
chart is used for the three-dimensional case); and H, = thickness of soil layer. Comments:
(1) if A /H, = 0, the flow is vertical {Fig. 5(c)}; and (ii) C¢ has the same value for all values
of h,/H, greater than 5.

leakage rate obtained using eqn (24) is a lower bound solution for the
leakage rate through the composite liner when the geomembrane and the
underlying soil are in perfect contact. This lower bound solution gives a
good approximation of the l€akage rate if the ratio between the width of
the geomembrane hole and the thickness of the low-permeability soil is
large, which is rare.

Upper bound solution. If the flow is assumed to be radial (Fig. 5(d)), the
leakage rate is given by a close-form solution obtained by integrating
Darcy’s equation for a circular domain:

Q* = ”ks(hw + H, )lln(ZH,/b) (25)

where the notation is the same as for eqn (23).
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In some cases, eqn (25) leads to absurd resuits, such as flow rates
increasing as soil thickness increases. However, this case is useful because
Faure showed that it provides an upper bound for the leakage rate through
the composite liner when the geomembrane and the underlying soil are in
perfect contact. Also the fact that the leakage rate in the case of radial flow
is expressed by a close-form solution for the three-dimensional case
(circular hole) as well as for the two-dimensional case provides a conve-
nient way to compare the three-dimensional case with the two-dimension-
al case. Any relationship between the two- and three-dimensional cases is
useful because the three-dimensional case is very difficult to analyse.

Approximate solution. The upper bound solution provided by the radial
flow equation (eqn (25)) is excessively high in many cases. In addition, for
H./h, larger than a certain value, the flow rate increases with increasing
soi] thickness, as shown in Fig. 9 (case ¢). Since the leakage rate cannot
increase if the thickness of the soil layer increases while all other variables
remain constant, the upper bound cannot be used as an approximation for
the leakage rate when H/h,, is large.

Equation (25) can be arbitrarily transformed by replacing h,, + H by
h.,, which gives:

0" = mk, b n(2H,/b) (26)

As it turns out, this equation can be used for {arge values of H/h,, where
it gives values (case (¢’) in Fig. 9) less than, but not too far from, the values
calculated using eqn {23).

Usefulness of the two-dimensional case. The above considerations re-
garding boundaries and approximations related to the two-dimensional
case will provide useful guidance for an approximate evaluation of the
leakage rate in the three-dimensional case (circular hole) where no
numerical solution similar to eqn (23) is available.
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3.2.3 Three-dimensional analyses assuming perfect contact
In the case of three-dimensional flow (circular hole) with perfect contact
between the geomembrane and the underlying soil, the flow is certainly
limited by a bell-shaped phreatic surface similar to the phreatic surface of
the two-dimensional flow (case (b} in Fig. 5). However, to the best of our
knowledge, no analytical or numerical study is presently available for this
case. Nonetheless, upper bound and lower bound solutions are available
and they are expressed by close-form equations.

Lower bound solution. The equation related to vertical flow (similar to
the two-dimensional case (c) in Fig. 5) gives a lower bound for the leakage
rate and is obtained by writing Darcy’s equation for a cylindrical domain:

Q = kyalh, + H)IH, (27)

T T r—
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Fig. 9. Comparison of various assumptions regarding lcakage rates through composite

liners. The curves give leakage rates through a composite tiner due to a slot of width bin the

geomembrane (two-dimensional case), assuming perfect contact between the geomem-

brane and the low-permeability soil. Calculations were made with several assumptions

regarding flow: (a) correct solution; (b) vertical flow; (c) radial flow using eqn (25); and (¢')

radial flow using ¢qn (26). Correct sotution, vertical flow, and radial flow are illustrated in
Fig. 5. (Adapted from Faure.'®)

where: Q = lower bound of the leakage rate; k;, = hydraulic conductivity
of the low-permeability soil; a = surface area of the hole in the geomem-
brane (a = md?/4if the holeis circular); d = diameter of the circular hole;
h,, = liquid depth on top of the gecomembrane; and H, = thickness of the
low permeability soil. Basic SI units are: Q (m*/s), k, (m/s), a (m?), d (m),
h,, (m), and H, (m).
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Upper bound solution. The equation related to the three-dimensional
radial flow (similar to the two-dimensional case (d) in Fig. 5) is obtained by
integrating Darcy’s equation for a spherical domain:

0 = wkyhu+ H,)dI(1 - 0-5d/H,) (28)

where the notation is the same as above.

By analogy with the corresponding equation for the two-dimensional
case (eqn (25)), it may be assumed that eqn (28) provides an upper bound
solution for the leakage rate when the geomembrane and the underlying
soil are in perfect contact. It can also be assumed that eqn (28) leads to
absurd results for some cases, like eqn (25). Therefore, eqn (28) is simply
used as a preliminary step to obtain a better solution, as indicated below.

First approximate solution. As discussed for eqn (25) in the two-
dimensional case, eqn (28) can be arbitrarily transformed by replacing
h,, + H, by h,,, which results in:

O = whehy, di(1 - 0-5d/H,) (29)

It is possible that this equation gives an approximate value of the
leakage rate when d/H, is small (like egn (26) for the two-dimensional
case). In most practical cases, d/H; is small since typical geomembrane
defects are of the order of 1-10 mm (0-04-0-4 in}) in diameter, whereas the
low-permeability soil component of composite liners is often of the order
of 1 m (3 ft) thick. Itis interesting to note that eqn (29) tends toward a very
simple limit when d/H, tends toward zero:

Q = wk,hy d (30)

where the notation is the same as for eqn (27).

Due to the lack of a more rigorous solution, eqn (30) will be used as an
approximation for the leakage rate when there is perfect contact between
the geomembrane and underlying low-permeability soil.

Second approximate solution. Another approach for evaluating leakage
rates in the three-dimensional case is to use the chart established by Faure
for the two-dimensional case (Fig. 8) and modify eqn (23) by replacing in
Q* (which is equal to Q/length) the length of the slot by the perimeter 7rd
of the circular hole (and not half the perimeter, nor the diameter of the
hole, as one may be tempted to do):

Q= 7Crk(H, +h,)d an

where: Q = approximate value of the leakage rate; C¢ = dimensionless
coefficient given by Faure’s chart (Fig. 8); &, = hydraulic conductivity of
the ‘low-permeability soil; H, = thickness of the low-permeability soil 1
layer; h,, = liquid depth on top of the geomembrane; and d = hole l; '5: i
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82 J. P. Giroud, R. Bonaparte

diameter. Basic SI units are: Q (m%/s), k, (m/s), H, (m), ,, (m), and d (in);
Cr is dimensionless.

3.2.4 Three-dimensional analyses with interface flow

Analytical studies of leakage through composite liners due to geomem-
brane defects considering interface flow were published by Fukuoka?' and
Brown et al.’ Several of the equations presented in Section 3.2.4 are
adapted from these publications.

Flow mechanism. As discussed in Section 3.1.2, a fraction of the liquid
that has passed through a geomembrane defect will flow laterally between
the geomembrane and the soil, unless there is perfect contact between the
geomembrane and the underlying soil. This ‘interface flow’ covers an area
called the wetted area. In the case considered here, the hole in the
geomembrane is assumed to be circular and the interface flow is assumed
to be radial; therefore, the wetted area is circular. The interface low takes
place in the (usually small) spacc between the geomembrane and the
underlying soil.

It is interesting to consider the case where there is a geotextile between
the geomembrane and the underlying soil. Strictly speaking, this three-
component liner does not meet the definition of a composite liner given in
Section 1.3.2. However, results of experiments described subsequently
have shown that, in some cases, the presence of a geotextile layer at the
interface improves the performance of a composite liner. Therefore, it is
useful to consider the case of a liner comprised of a gecomembrane upper
component, a geotextile middle component, and a low-permeability soi}
lower component. (It should be made clear that this geotextile is not a
drainage layer and should not be connected to any kind of outlet, such as a
pipe, sump or manhole.) If there is a geotextile between the geomembrane
and the underlying low-permcability soil, the interfacc flow takes place
partially within the geotextile and partially within the spaces between the
geotextile and the gecomembrane and between the geotextile and the soil.

Hydraulic head. Flow through composite liners is normally slow. There-
fore, one may assume that there is no significant head loss when liquic
passes through a geomembrane defect. Consequently, the hydraulic
head acting on top of the low-permeability soil, just below a geomembrane
defect, can be assumed to be equal to the depth of liquid on top of the
geomembrane, A,,. (This implies that the top surface of the low-permeabil-
ity soil layer is used as the datum for the hydraulic head and geomembrane
thickness is neglected.) The hydraulic head decreases from 4,, at the edge
of the circular defect to zero at the periphery of the wetted area. This i
illustrated by Fig. 10 in the case of a circular hole and radial interface flow.

The actual shape of the curve of the hydraulic head acting on top of the
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low-permeability soil, &, as a function of the radius, 7, can be given by a
study of the interface flow.

Interface flow. The interface flow is the lateral flow in the space between
the geomembrane and the soil. Hereafter we assume that the space
between the gecomembrane and the soil is uniform (e.g. an empty space of
uniform thickness between the geomembrane and the soil, or a geotextile
of uniform thickness and permeability between the geomembrane and the
soil). We also assume that the geomembrane hole is circular and the

HYDRAULIC HEAD ON THE
LOW-PERMEABILITY SOIL

I
I
1
|
I
!

° da/2 ) L r

AADIUS MEASURED FROM THE CENTER
OF THE QEOMEMBRANE CIRCULAR HOLE

Fig. 10. Hydraulic head on top of the low-permeability soil underlying the geomembrane.
The horizontal reference level for the hydraulic head is the upper surface of the low-
permeability soil layer. The origin 0 of the radial axis is on the soil surface, below the center
of the circular hole of the peomembrane. Legend: r = any radial distance measured from
the origin 0; & = diameter of the geomembrane circular hole; R = radius of the wctted
arca; and A, = depth of water on the gcomembrane. (Note: For 0 <r < df2, the hydraulic
head is actually A = h, + T, +5, where T, = geomembrane thickness, and s = spacing
between geomembranc and soil. T, and s are very small and are neglected.)

interface flow is radial. The uniform medium between the geomembrane
and the soil can be characterized by its hydraulic transmissivity 6.
If the medium is a geotextile, its hydraulic transmissivity is defined by:

6= k,s (32)

where: § = geotextile hydraulic transmissivity; k, = geotextile in-plane
hydraulic conductivity; and s = spacing between the geomembrane and
the underlying soil (i.e. geotextile thickness). Basic SI units are: 8 (m%/s),
k, (m/s), and s (m).

If the medium is an empty space, its hydraulic transmissivity is expressed
by the following equation, adapted from Brown ezal.,” which was obtained

_
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84 J. P. Giroud, R. Bonaparte

by applying Newton’s viscosity law to flow between two smooth, parallel
plates:

_ s

o= o . (33)
where: 8 = hydraulic transmissivity of the empty space; p = density of the
liquid; g = acceleration due to gravity; s = spacing between the geomem-
brane and the soil; and 7 = viscosity of the liquid. Basic SI units are: 8
(m?s), p (kg/m’), g (m/s?), s (m), and 7 (kg/(m.s)).

For example, using the density (p = 1000 kg/m®) and the viscosity
(n = 1073 kg/(m.s)) of water at 20°C, eqn (33) shows that a spacing
s = 1 mm is equivalent to a hydraulic transmissivity of 8 X 10~* m%s, and
a spacing s = 0-1 mm is equivalent to a hydraulic transmissivity of
8 x 10~7 m?s. In comparison, a typical needlepunched nonwoven geotex-
tile with a thickness of 3 mm and a hydraulic conductivity of 1 X 1073 m/s
has a hydraulic transmissivity of 3 x 10™® m%s.

The flow rate related to interface flow can be expressed using Darcy’s
equation:

Q; = kiA = 6iB (34)

where: Q, = interface flow rate; k = hydraulic conductivity of the flow
medium; { = hydraulic gradient; A = cross-scctional area of the flow;
6 = hydraulic transmissivity of the flow medium; and B = width of the
flow. Basic SI units are: Q; (m’5s), k (m/s), A (m?), 8 (m?s), and B (m); iis
dimensionless.

In the case of the considered radial flow:

i = —dh/dr (35)
B = 2qr (36)
Hence, with Q; = Q, in eqn (34):

Q, = —2mr 8dh/dr ‘ a7

where: Q, = interface radial flow rate at radius r; and 4 = hydraulic head
acting on top of the low-permeability soil.

Flow through the soil. The slope of the flow lines through the soil is not
known. For the sake of simplicity, flow through the soil layer is assumed to
be vertical. Darcy’s equation related to flow through the soil can then be
written as follows: .

Qs = ks isAs "" (38)

where: Q, = flow through the soil; i; = vertical hydraulic gradient
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through the soil; and A, = cross-sectional area of the considered flow.
Basic SI units are: Q, (m%s), k, (m/s), and A, (m?); i, is dimensionless.
In the case considered, the vertical hydraulic gradient in the soil, i,
varies radially because the hydraulic head acting on top of the soil, 4,
varies radially: T e

h+H
= —1 39

‘S H, ( )
where: H, = thickness of the soil layer; and A is a function of r as shown in
Fig. 10.

If we consider an annular region between radii r and r + dr:

A, = 2mrdr (40)

Consequently the flow rate in the soil can be expressed as follows:

dg, = 27rrk‘—h—}-H—’— dr (a1

Flow differential equation. The principle of conservation of mass applied
to the differential element in Fig. 11 dictates that:

dQ,+dQ, =0 (42)
dQ, can be derived from eqn (37):

1drh  d*h
dQ, = =27ré (; 5 + FP—) dr (43)
Combining eqns (41), (42) and (43) leads to:
1dn  d*h  k h
- — == — 44
rar TR 0(1+H5) )

Equation (44) was written by Fukuoka®! for the case of interface flow in
a geotextile (i.e. # given by eqn (32)), and by Brown et al.’ for the case of
interface flow in an empty space between the geomembrane and the soil
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Fig. 11. Relationship between radial interface flow, Q;, and flow into the soil, Q,.
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(i.e. 6 given by eqn (33)). As shown by Brown et al.,’ this differential
equation can be solved using Bessel functions.

Special case. In order to simplify eqn (44), Brown et al.” assumed that
the hydraulic gradient for the vertical flow in soil is one. According to eqn
(39), this simplifying assumption is acceptable if the hydraulic head acting
on the low-permeability soil is negligible compared to the thickness of the
low-permeability soil. Values of hydraulic heads acting on liners discussed
in Section 1.3.6 show that the above simplifying assumption is:

® always acceptable for bottom liners;
® unconservative for liquid impoundment top liners; and
® acceptable in most cases of top liners for landfills.

Using i; = 1 and applying the principle of conservation of mass to the
flow between the geomembrane hole and the boundary of the differential
element in Fig. 11 results in:

0=0.+0, (45)
where Q, is given by eqn (37), and:

Q = 7Rk, (46)

Q. = mk, 47

where: Q = leakage rate; Q, = interfacc radial flow rate at radius r;
Q. = flow into the soil within radius r; R = radius of wetted area; and
k, = hydraulic conductivity of the soil. Basic SI units are: Q, Q, and Q,
(m’s), r and R (m), and &, (m/s).

Combining eqns (37), (45), (46) and (47) leads to:

dh R?
) (’" "T) (48)

Integrating this differential equation leads to the equation of the h-r
curve:

n= Bk [2 In %-F(—’-)z—]] (49)

48 R

and the relationship between the depth of liquid, A,, and the radius of the
wetted area:

Rk, 2R d \? '
h, = 10 [2 In -—d—-+ (-Z—-R—) “1} (50)

where: A, = depth of liquid on the geomembrane; R = radius of the
wetted area; k, = hydraulic conductivity of the low-permeability soil;
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¢ = hydraulic transmissivity of the space between the geomembrane and
the low-permeability soil (given by eqn (32) if there is a geotextile between
the geomembrane and the low-permeability soil and by eqn (33) if the
space between the geomembrane and the low-permeability soil is empty);
and d = diameter of the geomembrape hole. (Note that eqn (49) satisfies
eqn (44) withh = 0,1.e. i, = 1.)

Equation (50) gives the radius of the wetted area if the hydraulic
transmissivity of the space between the geomembrane and the low-
permeability soil is known and if the depth of liquid on top of the
geomembrane is known. When the radius of the wetted area, R, is
determined, the leakage rate, Q, can be determined using eqn (46).

The most uncertain step in using the above equations is the selection of
the hydraulic transmissivity value, 8. If there is a geotextile between the
geomembrane and the underlying soil, and if the geotextile is in close
contact with the overlying geomembrane and the underlying soil, the
hydraulic transmissivity, 8, can be obtained by conducting bydraulic
transmissivity tests on samples of the geotextile subjected to a normal
stress equal to the normal stress in the field. If there is no geotextile
between the ggomembrane and the soil, the hydraulic transmissivity to use
in eqn (50) is given by eqn (33). To use eqn (33), it is nccessary to estimate
the spacing, 5, between the geomembrane and the underlying soil. This
spacing depends on the rugosity of the soil surface, the stiffness of the
geomembrane, and the magnitude of the normal stress that tends to press
the geomembrane against the soil. Recommended values for the spacing,
s, were given by Brown et al.® on the basis of model tests, and can be found
hereafter in Section 3.3.2. Using these recommended values, Brown etal.’
established charts giving the leakage rate and the radius of the wetted area
as a function of the geomembrane hole surface area, the soil hydraulic
conductivity and the depth of water on the geomembrane. To summarize
results presented in these charts and to extrapolate or interpolate them, we
propose the following empirical equations:

Q =07a""k%n, (51)
R = 0-5a"®k;0%n)* (52)

These equations are only valid with the units indicated: Q = leakage
rate (m%s); @ = geomembrane hole area (m?); k, = hydraulic conductiv-
ity of low-permeability soil (m/s); h,, = liquid depth on the geomembrane
(m); and R = radius of wetted area between geomembrane and soil (m).
Equations (51) and (52) result from a combination of the theoretical
analysis presented above and experimental data presented in Section
3.3.2. Note that, as discussed prior to eqn {45}, eqns (51) and (52) are
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88 J. P. Giroud, R. Bonaparie

based upon assumptions that are valid only if the liquid depth on the
geomembrane is less than the thickness of the low-permeability soil layer.

Upper bound solution. An upper bound of the flow rate and the radius of
the wetted area occurs when the spacing s between the geomembrane and
the underlying soil is so large that the flow rate through a geomembrane
defect is given by eqn (22), that is the Bernoulli’s equation related to free
flow through an orifice. By combining eqns (22) and (46), it appears that, if
the spacing between the geomembrane and the soil is large enough to
ensure free flow, the radius of the wetted area is given by:

aR%k, = 0-6aV2gh, (33)
heﬁcc:

R = 0-44a"5(2gh, )" S k3 (59)
and, in the case of a circular hole:

R = 0-39d(2gh )X k75 (55)

where: R = radius of the wetted area; a = gcomembrane hole area;
d = hole diameter; g = acceleration due to gravity; &,, = liquid depth on
the geomembrane; and &, = hydraulic conductivity of the low-permeabil-
ity soil underlying the geomembrane. Basic SI units are: R (m), a (m?), 4
(m), g (m/s?), k,, (m), and &, (m/s).

Note that the radii given by eqns (52}, (54) and (55) correspond to cases
where there is no overlapping between wetted areas related to different
geomembrane holes.

3.3 Laboratory model tests

3.3.1 Introduction
Tests to evaluate leakage rates through composite liners due to geomem-
brane holes were conducted by Fukuoka?'*? and Brown et al.’

In both studies, tests were conducted with a geomembrane having a
circular hole, and various hole djameters were tested. Additional tests by
Brown et al. included geomembrane flaws that were not circular such as
slits or seam defects. The tests were intended to be full-scale models since
hole size, geomembrane thickness and (approximately) soil layer thick-
ness were similar to typical field values. However, the permeameters used
had a limited diameter (e.g. 0-6 m (2 ft) for Brown et al. and 1-5 m (5 ft)
for Fukuoka) and the extent of lateral flow between the geomembrane and
soil was limited by the walls of the permeameter.

In the tests conducted by Brown et al., the geomembrane was always
covered by 0-15 m (6 in) of gravel to ensure contact between geomem-
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brane and soil, and, in some tests, an additional load up to 160 kPa
(3340 psf) (equivalent to 10 m (30 ft) of soil) was applied (o evaluate the
effect of overburden pressure. In many of the tests conducted by Fukuoka,
the geomembrane. was not covered, and the only load applied on the
geomembrane was the water pressure.

Water depths on the geomembrane in the Brown et al. tests were up to
1 m (40 in). In the Fukuoka tests, water pressures equivalent to water
depths up to 40 m (130 ft) were used. Tests by Brown ef al. were
conducted for landfill applications while Fukuoka was working on the
design of a large dam and reservoir.

Fukuoka used only a PVC geomembrane, while Brown et al. considered
avariety of geomembranes: HDPE, PVC, CSPE and EPDM, with various
thicknesses. Some of the tests conducted by Fukuoka and by Brown er al.
included a geotextile between the geomembrane and the soil.

Tests by Fukuoka as well as tests by Brown er al. showed that there is
significant flow between the geomembrane and the soil, with or without
geotextile.

3.3.2 Review of tests by Brown et al.
These tests are presented in a report by Brown et al.’

Description of the tests. Tests were conducted in 2 0-6 m (24 in) dia-
meter permeameter. Geomembrane hole diameters ranged between
0-8 mm (0-03 in} and 13 mm (0-5 in), and noncircular holes such as slits
and seam defects were considered.

The geomembranes and their thicknesses were: HDPE, 0-75-2-5 mm
(30~100 mils); PVC, 0-5-0-75 mm (20-30 mils); CSPE, 0-9-1-15 mm (36—
45 mils); and EPDM, 0-75 mm (30 mils). In some tests, geotextiles were
included between the geomembrane and the soil. The geotextiles were
needlepunched nonwoven materials with masses per unit area of 250-
350 g/m? (7-10 oz/yd?) and thicknesses (under no load) of the order of
2:5-4 mm (0-10-0-16 in).

The soils used were a silty sand (k, = 2 X 107 m/s}, and a clayey silt
(ks = 2% 107® mys).

Approach. The diameter of the pcrmeameter used by Brown ef al. was
small (0-6 m (24 in)) and lateral flow could not extend beyond a radius of
0-:3 m (12 in) as it would have in most cases without the limitation imposed
by the permeameter walls. This fact was recognized by Brown et al. who
did not use their tests to evaluate the leakage rate directly. Instead, they
conducted calculations similar to those presented in Section 3.2.4 (but
taking into account the presence of the permeameter walls) to derive the
value of the spacing between the geomembrane and soil from the test
results. The value of the spacing thus obtained can be used in eqn (33) to
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calculate the value of 6 required in eqn (50) to determine the radius of the
wetted area and, therefore, the leakage rate in situations where lateral
flow is not impeded by permeameter walls. The spacing values determined
by Brown ef al. are as follows:

0-02 mm for clayey silt rcgardléss of geomembrane type
0-08 mm for silty sand and flexible geomembranes (PVC)
0-15 mm for silty sand and stiff gecomembranes (HDPE)

The spacing betweern the geomembrane and the soil, and, therefore, the
leakage rate, appears to increase if the geomembrane stiffness increases
(at least in the case of the more permeable soit). It also appears that
spacing increases if the soil is coarse, which is illustrated by the following:

0-02 mm = d,, of the clayey silt used in the tests
0-08 mm = d,5 of the silty sand used in the tests

The above spacing values are related to the case of a geomembrane with
15 em (6 in) of gravel overburden. This is a very low overburden pressure
in comparison to field conditions. As a result, one may conclude that the
above spacing values are larger than under field conditions. Such a
conclusion is not necessarily correct since, in the field, geomembranes
have wrinkles and subgrade preparation is not as good as in the tests.

Following is our review of the influence of various parameters on the test
results of Brown et al.

Influence of geotextile between geomembrane and underlying soil. On
the clayey silt (k, = 2 X 1078 m/s (2 X 107° cm/s)), the geotextile does not
change the leakage rate. On the silty sand (k, =2X107%m/s
(2 x 107* cmJs)), the geotextile seems to reduce slightly the leakage rate.

Effect of overburden pressures. When a compressive stress of 160 kPa
(3340 psf) (equivalent to 10 m (30 ft) of soil) is applied on a 0-75 mm
(30 mil) thick HDPE geomembrane placed on a soil with a hydraulic
conductivity of 2 X 107° m/s (2 x 107 cm's), the leakage rate is divided by
200 and the calculated theoretical spacing between geomembrane and soil
is divided by 10, as compared: to the case where the overburden pressure
was 1-5 kPa (30 psf). (There are no results for the soil with a hydraulic
conductivity of 2 X 1078 m/s (2 X 1075 cm/s).) Based on this limited result,
the effect of overburden pressure on the leakage rate appears to be
significant.

Effect of flaw shape. Erratic results were obtamed with geomembrane
slits and seam defects on the soil with k, = 2 X 107¢ m/s (2 x 10~* cr/s),
and it was difficult to compare slits, seams and circular holes with the
2% 107 m/s (2 % 10™% cm/s) soil because for that soil there is a large
lateral flow and permeameter walls disturbed the flow. Therefore, in our
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opinion, it is not possible to draw conclusions regarding the effect of flaw
shape.

Conclusions from Brown et al.’s tests. In order to extrapolate to field
conditions, Brown et al. make the recommendations in Table 8 regarding
- the values of the spacing between geomembrane and soil to be used in the
equations presented in Section 3.2.4 to evaluate leakage rate and radius of
wetted area in actual field conditions where lateral extension of flow is not
impeded by wall permeameter.

TABLE 8

Soif hydraulic Geomembrane-soil
conductivity, k, spacing, s

(mis) {mm)

107° 0-15

107’ 0-08

107" 0-04

1077 0-02

These values are larger than the calculated spacing values previously
given in the discussion of the approach. Also, these spacing values are for
the case when there is little or no overburden (e.g. 15 cm (6 in) of gravel),
and smaller spacing values would have been obtained with overburden of
the order of typical field values. Therefore, the above spacing values are
large in the case of laboratory conditions. We will assume that these values
can be used in the case of excellent field conditions (defined subsequently),
based on the following rationale: (i) on one hand, in the field, overburden
stresses, which tend to decrease the spacing, are larger than the 15 cm
{6 in) of gravel used as overburden in the tests; and (ii), on the other hand,
for a given overburden stress, spacing between the geomembrane and the
soil is larger in the field than in the laboratory tests since, even under
excellent field conditions, geomembranes always have wrinkles and soil
preparation is never as good as in the tests.

The above spacing values were used by Brown ez ai.” to establish their
charts (not reproduced here), which we used to establish eqns (51) and
(52). Therefore, values given by these equations can be assumed to
represent excellent field conditions.

3.3.3 Review of tests by Fukuoka

These tests are described by Fukuoka.?-* They were conducted for the
design of the lining system for a dam and a reservoir with a maximum water
head of 40 m (130 ft).
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